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Abstract

Dose–response curves for lordosis and proceptive behaviors were obtained for luteinizing hormone releasing hormone (LHRH), prostaglandin
E2 (PGE2) and dibutyryl cyclic AMP (db-cAMP), by infusing them in the right lateral ventricle (icv) of ovariectomized (OVX) estradiol benzoate
(E2B; 2 μg) treated rats. Two dose levels, one producing the maximal effect and the other one producing a submaximal response (∼ED50) were
selected for testing the capacity of Rp-cAMPS, a kinase A blocker, to modify the behavioral response to the three compounds. Icv injections of
Rp-cAMPS, significantly depressed both lordosis and proceptive responses induced by LHRH, PGE2 and db-cAMP. The results show that these
agents use the cAMP-kinase A signaling pathway to elicit their stimulating effect on estrous behavior in the rat.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It is generally accepted that estrous behavior in the cycling rat
is triggered by a rise in progesterone (P) occurring at proestrus,
when estradiol (E2) plasma levels are high (see Blaustein and
Erskine, 2002; Moralí and Beyer, 1979; Pfaff et al., 2006). This
belief is supported by the finding that the sequential administra-
tion of E2 and P to ovariectomized (OVX) rats induces normal
estrous behavior, both lordosis and proceptivity (Beach, 1942;
Edwards et al., 1968;Moralí and Beyer, 1979; Yanase andGorski,
1976) Large variety of non-steroidal agents; including peptides,
amines, prostanoids and aminoacids (for review see Beyer and
Gonzalez-Mariscal, 1986; Beyer et al., 2003; Blaustein, 2003;
Etgen, 2003; Pfaff et al., 2006) can substitute for P to facilitate
lordosis behavior in OVX rats primed with estradiol benzoate
(E2B). Particularly well studied has been the stimulatory effect on
lordosis behavior of LHRH and PGE2 (Dudley and Moss, 1976;
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Foreman and Moss, 1977; González-Mariscal and Beyer, 1988;
Moss and McCann, 1973; Riskind and Moss, 1983; Rodriguez-
Sierra and Komisaruk, 1977, 1982; Sakuma and Pfaff, 1980; Wu
et al., 2006). The temporal characteristics of the responses
induced by these agents, i.e., latency to display lordosis are similar
to those of P, suggesting a common mechanism of action (see
Beyer and Gonzalez-Mariscal, 1986). Indeed, the progesterone
receptor (PR) antagonist RU486 blocks the stimulatory effect of
LHRH and PGE2 on the lordosis behavior of estrogen primed rats
pointing to the participation of the PR in this event (Beyer et al.,
1997). However, since these agents act on membrane receptors
their effect on estrous behavior must be mediated by second
messenger signaling pathways (Nestler and Duan, 1999).

Second messengers are involved in the facilitation of
lordosis behavior in rodents. Thus, administration of cAMP
(into the brain or subcutaneously) facilitates lordosis behavior
in E2B-primed rats (Beyer et al., 1981, 1982, 1997; Beyer and
Gonzalez-Mariscal, 1986; González-Flores et al., 2006; Mani
et al., 2000; Petralia and Frye, 2006). Moreover, the
administration of blockers of kinase A (cAMP dependent
kinase) interferes with the facilitatory effect of P in E2B primed
OVX rats (González-Flores et al., 2006; Mani et al., 2000).
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Since both LHRH and PGE2 activate the cAMP-kinase
signaling pathway in several tissues (Jabbor and Sales, 2004;
Pawson and McNeilly, 2005), we tested the capacity of Rp-
cAMPS, a specific blocker of kinase A, to interfere with the
facilitatory effect on estrous behavior exerted by these
compounds in OVX E2B primed rats. The effect of db-cAMP
on estrous behavior was also studied for comparative purposes
and for verifying the capacity of our dose of RpcAMP to block
the effect on estrous behavior of cAMP.

2. Methods

2.1. Animals

A total of 236 females were used in this study. Animals were
sexually inexperienced female Wistar rats (240–280 g) bred in
our colony. They were kept at 23±2 °C with an inverted light–
dark cycle (14 h light, 10 h dark, lights on at 2300 h). They were
fed with Purina rat chow and water ad libitum.

2.2. Surgical procedures

Females were bilaterally OVX under ether anesthesia, injected
with penicillin (22,000 u.i./kg) and housed in collective cages (4
females per cage). Two weeks later, they were anesthetized with
xylazine (4mg/kg) and ketamine (80mg/kg) and placed in a Kopf
stereotaxic instrument (Tujunga, California). Females were im-
planted with a stainless steel cannula (22 gauge, 17 mm long) in
the right lateral ventricle (icv): coordinates; interaural 8.20 mm,
bregma 0.80 mm (Paxinos and Watson, 1997). A stainless steel
screw was fixed to the skull and both the cannula and screw were
attached to the bone with dental cement. An insert cannula (30
gauge) provided with a cap was introduced into the guide cannula
to prevent clogging and contamination.

Animal care and all the experimental procedures adhered to
the Mexican Law for the Protection of Animals.

2.3. Behavioral testing

Females were placed in a circular plexiglas arena (53 cm in
diameter) with a vigorous male. Receptivity for each female was
determined as a lordosis quotient [LQ=(number of lordosis/10
mounts)×100]. The intensity of lordosis (0 to 3) was quantified
according to the lordosis score (LS) proposed by Hardy and
DeBold (1977). The presence of proceptive behaviors (hopping,
darting, ear-wiggling)was also recorded.A femalewas considered
proceptive when showing any of the above mentioned behavioral
patterns. Females were tested at 2 and 4 h after icv drug injections.

2.4. Experimental procedure

2.4.1. Experiment 1

2.4.1.1. Establishment of dose–response curves and effective
dose 50 (ED50) for LHRH, PGE2 and db-cAMP administered
icv to E2B (2 μg) treated OVX rats. One week after surgery,
118 females were injected s.c. with E2B (2 μg) and 40 h later
with different dosages of LHRH, PGE2 or db-cAMP. These
agents were infused through a plastic Clay Adams catheter (PE
10 No 7401), fitted to a Hamilton syringe (10 μl) that was
inserted into the guide ventricular cannula. E2B, PGE2 and db-
cAMP were purchased from Sigma (St. Louis, Missouri, USA).
LHRH was purchased from Peninsula laboratories (Belmont,
CA, USA).

LHRH and db-cAMP were dissolved in distilled water (1 μl
volume) and PGE2 in saline (2 μl volume). Dosages explored
were: LHRH, 0.0005 μg, 0.005 μg, 0.05 μg, 0.5 μg; db-cAMP,
0.040 μg, 0.200 μg, 1 μg, 5 μg and PGE2, 0.010 μg, 0.100 μg,
1 μg, 10 μg. Each group consisted of 8 or 9 females. Control
injections (vehicle) were also performed. Observations were
made at 2, and 4 h following intraventricular infusion. Infusion
lasted 60 s. Animals were used only once.

2.4.2. Experiment 2

2.4.2.1. Effect of Rp-cAMPS, a kinase A blocker, on the
estrous behavior induced by two selected doses of LHRH,
PGE2 or db-cAMP. Rp-cAMPS (Rp-adenosine 3′,5′-cyclic
monophosphorothiate triethylamonium salt) is a specific in-
hibitor of kinase A (Gjertsen et al., 1995). This drug has been
effective in blocking the db-cAMP signal by inhibiting protein
kinase-A (PKA) “in vivo” (Botelho et al., 1988). Mani et al.
(2000) reported that the icv injection of 100 ng Rp-cAMPS to
E2B-primed rats interfered with the lordosis response induced
by P. Therefore, this dose was selected to assess the role of the
cAMP signaling and PKA cascade, in the facilitation of
lordosis by the three agents studied. A preliminary study using
this treatment showed that it does not produce unspecific
effects (ataxia, changes in locomotion, motor disabilities, food
and water intake) which could confound interpretation of the
results. Rp-cAMPS was purchased from Sigma (St. Louis,
Missouri, USA).

One week after implantation of the cannula in the right lateral
ventricle, 118 rats were treated with E2B (2 μg) and 40 h later
with one of the selected compounds (LHRH, PGE2 or db-
cAMP). Two dose levels for each agent were selected from
experiment 1. One dose was maximal, i.e., the one producing
the maximal effect for that drug, and the other one submaximal
(between 50 and 60 ED). Doses for LHRH were: 0.005 and
0.05 μg; for db-cAMP, 0.2 and 1 μg, and for PGE2, 1 and 10 μg.

Five minutes before and 15 min after the injection of the
drug, Rp-cAMPS was injected (100 ng/μl) into the lateral
ventricle. Behavioral observations were performed at the same
time intervals as in experiment 1.

2.5. Histological study

Twenty-four hours after completion of the experiments,
females were anesthetized with ether and 1% methylene blue
was administered through the cannula. Rats were sacrificed with
an overdose of the anesthetic. The brain was removed and
sectioned in the transverse plane to verify the cannula position
in the right lateral ventricle. Those animals with the cannula
outside the ventricle were discarded from the experiment.



Fig. 1. Effect of the icv injection of four doses of LHRH (0.0005–0.5 μg), PGE2, (0.010–10 μg) db-cAMP (0.040–5 μg) to OVX E2B primed rats on the lordosis
quotient (panel A) and % proceptive females (panel B).
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2.6. Statistical analysis

Regression lines for the dose–response curves of the three
agents explored in this study and ED50s were calculated
according to Tallarida and Murray (1987).

The effect of the kinase A blocker (Rp-cAMPS) on the
behavioral action of the LHRH, db-cAMP and PGE2 (exper-
iment 2) was assessed by comparing the LQs obtained with
these agents alone versus those obtained when Rp-cAMPS was
added. Since the distribution of LQ values in same groups were
not normal a Wilcoxon–Mann–Whitney test was used to
compare two independent groups (Bruning and Kintz, 1987;
Siegel and Castellan, 1988). This test is an excellent alternative
to the t-test with a power efficiency of 95.5% of the parametric
test (Siegel and Castellan, 1988). Fischer's exact probability test
was used to compare the proportion of proceptive females
among experimental groups (Bruning and Kintz, 1987).

3. Results

3.1. Experiment 1

3.1.1. Establishment of dose–response curves and effective
dose 50 (ED50) for LHRH, PGE2 and db-cAMP

Fig. 1 shows dose–response curves for lordosis behavior
produced by the icv infusion of four dosages of LHRH, PGE2

and db-cAMP (panel A) infused into the lateral ventricle of E2B-
primed rats (2 μg E2B s.c.). The control group, which received
only vehicle into the lateral ventricle showed very low levels of
lordosis at both testing intervals and did not display proceptivity.
As can be seen in Fig. 1 though the responses were not linear
across the range of dosages used a linear part of the curve
occurred with the three chemicals, allowing regression analysis
and the establishment of the ED values. ED50 values for lordosis
behavior were as follows: LHRH=0.001 μg, PGE2=0.29 μg
and db-cAMP=0.1 μg. The dose–response curve for lordosis
behavior of LHRH had a U inverted shape, i.e., larger doses
induced smaller responses. LHRH was the most potent of the
chemicals used to elicit lordosis. However, the greatest efficacy,
i.e., the largest response, was observed with PGE2.

Clear dose–response curves to the three chemicals used were
also observed for proceptive behaviors (Fig. 1B). With adequate
dosages, proceptivity was already manifested at the 2 h testing
interval, though slightly higher proportions of responding
females were seen at the 4 h interval (data not shown).
Regarding proceptivity LHRH was the most potent and
efficacious of the three chemicals used. Yet, the largest dose
of both LHRH and db-cAMP failed to produce a significant
effect on proceptive behaviors, indicating that these drugs elicit
a dualistic type of response, with an inverted U shape i.e., larger
doses producing smaller or null responses (Ariens et al., 1964).

3.2. Experiment 2

3.2.1. Effect of Rp-cAMPS on the stimulatory effect of LHRH,
PGE2 and db-cAMP on estrous behavior of E2B-pretreated rats

Fig. 2 shows the effect on lordosis and proceptive
behaviors of the icv administration of two selected doses of



Fig. 2. Efect of the icv injection of 100 ng of RpcAMPS on the stimulatory effect of
LHRH (0.005 and 0.05 μg), db-cAMP (0.2 and 1 μg) and PGE2 (1 and 10 μg) on
lordosis and proceptive behavior of OVX E2B-treated rats. Facilitation of lordosis
and proceptivity by LHRH, db-cAMP, PGE2 at 2 h was inhibited by Rp-cAMPS
administration. **Pb0.001; *Pb0.01 vs. corresponding group receiving drugs
plus vehicle.
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LHRH, PGE2 and db-cAMP Administration of Rp-cAMPS
significantly decreased the lordosis quotient induced by
LHRH, PGE2 and db-cAMP at 2 h post injection: LQ values
were not different from those observed in the vehicle only
group. This effect was transitory since at 4 h after testing no
significant differences between Rp-cAMPS treated groups
and those receiving only LHRH, PGE2 or db-cAMP were
noted.

The magnitude of the inhibitory effect of Rp-cAMPS on
proceptivity varied with the chemical tested. Thus, Rp-cAMPS
significantly suppressed proceptive behaviors induced by both
dosages of db-cAMP. In the case of the LHRH the inhibitor
significantly blocked the proceptive response to the higher dose
of the peptide but only slightly reduced the effect of the lower
dose. A decrease in the proportion of proceptive animals was
also observed in the two groups treated with PGE2 and Rp.
cAMP but this decrease did not reach statistical significance.
The inhibitory effect of Rp-cAMPS on proceptivity was
transitory since at 4 h values were comparable to those obtained
in the control group.
4. Discussion

The present study shows that the icv infusion of LHRH or
PGE2 elicits lordosis and proceptive behaviors in rats pretreated
with E2B. The temporal characteristics of the response were
similar to those obtained with the icv infusion of db-cAMP.
These results agree with previous data using these chemicals
both through the intracerebral and the sc routes (Beyer et al.,
1982, 1997; González-Mariscal et al., 1993; Hall and Luttge,
1977; Hall et al., 1975; Moss and McCann, 1973; Moss and
Foreman, 1976; Rodriguez-Sierra and Komisaruk, 1977, 1982;
Sakuma and Pfaff, 1980; Wu et al., 2006).

Previous work has shown that the cAMP-kinase A system is
important, if not essential, for the expression of estrous behavior
in E2B primed rats treated with P. Treatment with Rp-cAMPS, a
specific antagonist of kinase A, prevents the stimulatory effect
of P or its 5α reduced metabolite 5α-pregnanedione (5α-DHP)
on lordosis behavior (González-Flores et al., 2006; Mani et al.,
2000). Our data strongly suggest that LHRH and PGE2 also
elicit estrous behavior in E2B primed rats by activating the
cAMP-kinase A cascade. Thus, Rp-cAMPS, interfered with the
behavioral action of both LHRH and PGE2. Several data
indirectly support the participation of the cAMP-kinase A
pathway in the facilitation of estrous behavior by LHRH and
PGE2 in E2B-treated rats (Beyer et al., 1982, 1997; Beyer and
Gonzalez-Mariscal, 1986; González-Mariscal and Beyer, 1988;
González-Mariscal et al., 1993). Thus, both LHRH and PGE2

have been reported to activate the cAMP kinase-A cascade in
several tissues (Ojeda et al., 1986, 1988; Starzec et al., 1989;
Waring and Turgeon, 1992). Moreover, the action of LHRH on
lordosis behavior is potentiated by the administration of
phosphodiesterase inhibitors (theophylline, methyl isobutyl-
xanthine) which prevent the degradation of cAMP (Beyer and
Canchola, 1981; Beyer et al., 1982).

It is only possible to speculate on the identity of the
molecules phosphorylated by kinase A for eliciting estrous
behavior. Fig. 3 shows some of the cellular mechanism through
which cAMP-kinase cascade can stimulate lordosis. Since the
antiprogestin RU486 interferes with the facilitatory effect of
LHRH and PGE2 on lordosis behavior (Beyer et al., 1997) it
appears likely that kinase A acted by phosphorylating the PR
itself. However, none of the phosphorylation sites so far
reported in the PR are targets of kinase A (Bai et al., 1997;
Chauchereau et al., 1994). Therefore, the participation of kinase
A in the facilitation of estrous behavior must be mediated by
molecules other than PR. It is well established that PR-mediated
transcription depends on the recruitment of groups of
coactivator proteins (Giangrande et al., 2000, Liu et al., 1999;
Rowan and O'Malley, 2000). The PR has two activation
domains to which activators must incorporate: 1) a ligand (P)
dependent activation function 2 (AF-2), located in the C
terminal ligand binding domain of the receptor and 2), a ligand
independent activation function 1 (AF-1) located in the N-
terminal region. Both AF-1 and AF-2 require for their
transcriptional activity to recruit distinct groups of coactivators
(Oñate et al., 1998; Wärnmark et al., 2003). Coactivators affect
the transcriptional activity of the PR through a variety of



Fig. 3. By binding to membrane receptors, LHRH (O), PGE2 (□) and dopamine (▵) activate the enzyme adenylyl cyclase to generate cAMP (⋄). cAMP in turn, by
binding to the regulatory (R) subunit of protein kinase A (PKA) allows release of its catalytic (C) subunit. PKA does not directly phosphorylate the progesterone
receptor (PR) but can modulate PR activity by either phosphorylating coactivators essential for PR transcriptional activity or indirectly stimulating MAPK that
facilitates estrous behavior through a still undefined process that also requires the PR. PKA also phosphorylates DARPP-32 which enhances and prolongs cAMP
action (+) by inhibiting the phosphatase involved in its enzymatic degradation.

173J.M. Ramírez-Orduña et al. / Pharmacology, Biochemistry and Behavior 86 (2007) 169–175
cellular processes: some of them promote transcription by
acting as adaptors between the receptor and the transcription
machinery while others facilitate this process by remodeling
chromatin. Since kinase A can modulate the activity of some
coativators by phosphorylating specific sites in these proteins
(Lonard and O'Malley, 2005, Rowan et al., 2000) this process
could be involved in the facilitation of estrous behavior, as has
been suggested by some investigators (Auger et al., 2000;
Auger, 2004; Molenda et al., 2002). Recruitment of coactivators
in the AF2 domain requires the binding of P to the PR, a
condition absent in this experiment. On the other hand, the AF-1
domain mediates several ligand independent processes, i.e., not
requiring P, including transcription, and could therefore be a
candidate for the facilitatory effect on lordosis by LHRH, PGE2

or cAMP through phosphorylation by kinase A (see Fig. 3).
Kinase A signaling system has been reported to induce a
facilitatory effect on the AF-1 domain such as the enhancement
of the agonist effect exerted by RU486 when interacting with
this site (Leonhardt and Edwards, 2002; Leonhardt et al., 2003;
Meyer et al., 1990; Tetel et al., 1999). Moreover, some of the
coactivators reported to interact with the AF-1 domain influence
transcriptional activity in transfection assays and have been
reported to be substrates of kinase A (Lonard and O'Malley,
2005; Rowan et al., 2000). Further studies should be made to
establish the relevance of these processes, i.e., coactivator
phosphorylation, for estrous behavior.

Mani et al. (1994, 2000) found that dopamine, acting on D1
receptors, facilitated lordosis behavior by phosphorylating
DARPP-32 through the cAMP-kinase A system. DARPP-32
is a phosphatase 1 inhibitor which enhances and prolongs the
effects of various second messenger kinase systems. Since
LHRH and PGE2 activate the cAMP-kinase cascade it appears
likely that their effect is modulated by this process, i.e.,
DARPP-32 activation. This interpretation is also consistent with
the finding that synthetic phosphatase inhibitors (i.e., MIX or
theophylline) enhance the effect of LHRH on E2B primed OVX
rats (Beyer et al., 1982).

Several signaling systems, besides the cAMP/kinase A:
DAG/KC, cGMP/kinase, MAPK also appear to be involved in
the facilitation of lordosis induced by P or its ring A reduced
metabolites (González-Flores and Etgen, 2004; González-
Flores et al., 2006). Thus, administration of blockers of these
signaling pathways interfere with the expression of lordosis
behavior in OVX estrogen primed rats treated with P (Chu and
Etgen, 1997; Chu et al., 1999; González-Flores and Etgen,
2004; González-Flores et al., 2004; Kow et al., 1993, 1994;
Mobbs et al., 1989). Several data indicate that cAMP/kinase
system cross talks with other signaling pathways including the
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above mentioned systems (kinase C, kinase G, MAPK; Chin
et al., 2002; Robison-White and Stratakis, 2002; Stork and
Schmitt, 2002). In this context, the cAMP/kinase-A would be
the initial event in a chain of processes resulting in the
expression of estrous behavior.

The multiplicity of signals apparently participating in the
facilitation of estrous behavior in the rat should not be
surprising considering recent results both in vivo and in vitro
in the functioning of intracellular signaling pathways. Thus,
Nestler and Greengard (1999), conclude in a review on this
topic that “individual signaling mechanism often drawn as
distinct intracellular pathways normally function as complex
nets with virtually every conceivable type of interaction among
them”.
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